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ABSTRACT
This paper studies the performance of an Extended Kalman Filter/Multi-Hypothesis Tracking (EKF/MHT) approach to target
tracking with data from seismic and acoustic sensors.  We study the impact on tracking performance of the number,
placement, and detection threshold associated with these sensors.  Our algorithm scales well as the number of sensors
increases, indicating its suitability for processing data sets associated with large numbers of unattended ground sensors.
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1. INTRODUCTION

Track-oriented multi-hypothesis tracking is a powerful yet computationally intensive approach to target tracking [1].  Early
work on this technology at ALPHATECH is documented in [2].  Recently, we have extended the approach to handle
detection-level as well as track-level data, with hypothesis selection based on a computationally efficient LP-relaxation
approach [3][4].  In this paper, we extend the approach further to include bearings-only data, allowing for the efficient
processing of data from acoustic and seismic unattended ground sensors (UGS).  We study the performance of our tracking
algorithm as a function of the number, placement, and detection threshold associated with these sensors.  Finally, we identify
key issues and promising approaches for further research in UGS tracking.

2. TARGET MODELS, SENSOR MODELS, AND EKF/MHT PROCESSING

Evasive target motion can be represented with a number of stochastic dynamical models of varying complexity.  The simplest
such model is a Markovian stochastic process that is linear and has independent additive Gaussian noise.  This is the nearly
constant velocity model (NCVM):
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where ( )⋅xw  and ( )⋅yw  are mutually independent, zero-mean white Gaussian processes with ( ) ( )[ ] ( )τδτ −= tqwtwE xxx  and
( ) ( )[ ] ( )τδτ −= tqwtwE yyy .  Targets have an unknown initial position, and the probability distribution for initial target

velocity given by:
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Sensor observations associated with the ground target are defined at a sequence of non-decreasing times ( ),..., 21 tttk ∈ .
Discretization of the continuous-time dynamics based on this sequence of times yields the following:

(2.6) kkkk wXX +Φ=+1 ,
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and { }1, ≥kwk  is a zero-mean white Gaussian process, and ),0(~ kk QNw  with

(2.9)
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Note that we have defined target trajectories to lie on the xy-plane.  A three-dimensional state will be required in certain
applications; in ground target tracking, the z coordinate is often a known function of the target location on the xy-plane.
Numerous generalizations to our simple model exist, including Gauss-Markov process noise models, hybrid-state models,
and more general, nonlinear stochastic models [5].  Also, it may be the case that model parameters, particularly the intensity
of the process noise, are unknown and must be estimated as well.  Perhaps the most popular recent generalization is to use
hybrid-state models, for which the Interacting Multiple Model (IMM) filter [6] is an efficient recursive nonlinear filter that
generalizes the well-known Extended Kalman Filter (EKF).

As with target models, sensor models may have varying levels of complexity.   We assume that measurements are a nonlinear
function of the target state kX and the sensor state kX , with an additive independent Gaussian noise process { }1, ≥kvk .
That is:

(2.10) ),0(~,),( kkkkkk RNvvXXhY += ,

(2.11) [ ]′= kkkkk yxyxX �� .

Note that the dimension of the measurement kY  will depend on the sensor.

Our experimental results will be based on simulated detections from acoustic and seismic ground sensors.  Our kinematic
measurement models are as follows.  For acoustic data, we have:

(2.12) ( ) ( )kkkkkk yyxxXXh −−= − ,tan, 1 .

For seismic data, we have:
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We will assume that the area of interest is small and relatively flat, so that a second angular measurement from the sensors is
not necessary, i.e. we restrict attention to 2D scenarios.  We assume that the sensing range and measurement precision are
known for all sensors.  All sensors are characterized by a sensor-dependent probability of detection Dp  and a false alarm
rate.  In particular, we assume that the number of false alarms per scan of data per unit area obeys a Poisson distribution with
a sensor-dependent parameter FAλ , and the false alarms are uniformly distributed in the region of regard of the sensor.

In addition to a kinematic state, in general targets may also be characterized by a discrete state, or feature state.  A sensor-
dependent classification confusion matrix characterizes feature measurements.  Low-confusion feature measurements can be
crucial in effective tracking in high target density environments.   For the purposes of the analysis in this paper, we will not
be considering feature measurements in seismic and acoustic data.

Given the nonlinear observation equations (2.10)-(214), we use a standard EKF approach to recursive estimation of the
kinematic state associated with each track hypothesis.  This is a straightforward approach and is briefly summarized below
for completeness.  We denote by ( )kkX |  and ( )kkP |  the conditional mean and covariance for the kinematic state of a track
at time kt , given all information up to and including time kt .  Also, we denote by ( )kkX |1+  and ( )kkP |1+  the predicted
mean and covariance for the kinematic state of a target at time 1+kt , given all information up to and including time kt .  The
initial position estimate is given by a maximum likelihood estimate.  Subsequently, we proceed as follows.
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A key component in target tracking algorithms is the solution to the data association problems.  We refer the reader to the
details of our MHT approach described in [3][4].  Additional approaches, including the PMHT and JPDA are described in [1]
and references therein.  The following is a summary of modifications to our EKF/MHT algorithm for processing bearing-only
data.

•  In the case of an acoustic measurement, set range measurement to 2/3 the sensing range of the sensor, with a very large
range measurement variance1.

•  Use an angle-only gating mechanism in generating track-to-measurement associations with acoustic measurements.
•  Introduce a second gating mechanism, whereby associations that lead to a kinematic update that falls outside the

bounding circle of the current sensor are rejected.  (This significantly reduces ghosting effects [1].)
•  Only report tracks with a sufficiently small estimation covariance, ensuring that two distinct sensors are involved in each

track displayed.  Typically, this removes the initial segment of some tracks and will remove those tracks associated with
a single sensor.

•  Secondary likelihood calculations relevant to track termination are maintained on all track coasts (track continuations
with no sensor measurement).

Note that, as with other sensor types, acoustic and seismic data are characterized by detection probabilities and false alarm
rates.  Currently, our track likelihood calculations do not depend on these quantities.  Detection probabilities and false alarm
rates are used implicitly by appropriately modifying the following algorithm parameters.

                                                          
1 A natural choice for the initial range estimate given uniformly likely target location and a sensor range of Sr  is as follows:
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•  Confirmation threshold.  Rather than using an explicit track initiation scheme, e.g. SPRT [1], we use a post-processing
step that removes tracks that do not satisfy a lower bound on the time duration of the track.

•  Termination threshold.  This threshold, to which secondary likelihoods are compared, determines how long a track may
coast before it is terminated.  Note that the same threshold is applied to all active tracks, whether or not they are
ultimately confirmed.  Other approaches have been considered in the literature [1][2].

Note that our approach to processing passive sensor data has not required use of modified polar or spherical coordinates
[1][7][8].  Indeed, due to the multi-sensor nature of our problem, it is more convenient to consider a single, Cartesian
coordinate system for centralized tracking.

3. EXPERIMENTAL FRAMEWORK

Our experimentation is based on a MATLAB-based infrastructure for data simulation and performance evaluation, and a C++
based executable that constitutes the key EKF/MHT functional component.  Data simulation includes the following
components:

•  Ground Truth Simulation.  We generate stochastic realizations of target motion for an arbitrary number of targets,
according to a NCVM model for target motion.  Targets are restricted to move in a region of fixed size by reflecting their
motion back into the region when they move outside.  Motion is restricted to a two-dimensional xy plane.  Simulation
parameters are listed in Table 3.1.

Scenario length s60
Process noise parameter in x-direction, xq 32secm01.0 −

Process noise parameter in y-direction, yq 32secm01.0 −

Size of region for target motion ( )2m300
Target velocity covariance prior ( )2

sec
m

10
01
�
�

�
�
�

�

Table 3.1.  Ground truth simulation parameters.

•  Sensor data simulation.  The type of sensor (acoustic and/or seismic), as well as the number, location, detection
probability and false alarm rates are the key data simulation parameters that we will vary.  Other parameters are listed in
Table 3.2.

Data rate for seismic sensors Hz1
Data rate for acoustic sensors Hz2
Range measurement covariance for seismic sensors 2m100
Azimuth measurements covariance for seismic
sensors

( ) 22 deg)3(Rad05236.0 =

Azimuth error covariance for acoustic sensors ( ) 22 deg)3(Rad05236.0 =
Seismic sensor range m250
Acoustic sensor range m750

Table 3.2.  Sensor data simulation parameters.

•  Key EKF/MHT algorithm parameters.  We will vary the confirmation threshold.  The association gates, termination
thresholds, and depth for the set of hypothesis trees are listed in Table 3.3.

Seismic data association gate multiplier 9.210 (99% confidence)
Azimuth gate for acoustic measurements deg18
Termination threshold sec1
Depth of hypothesis trees 4

Table 3.3.  Tracking algorithm parameters.



•  Performance Metrics.  There is no single performance measure that quantifies the quality of a tracking algorithm.
Typically, one must trade off tracking performance with respect to a number of metrics of interest.  Table 3.4 lists the
performance metrics that we consider, along with a brief description.  Additional comments are given below.

Computation time Total processing time [sec]
Percentage of false tracks Fraction of tracks classified as false
Fragmentation Ratio of number of confirmed tracks and

number of targets
Probability of correct association Ratio of total number of correct

associations and total number of
associations in tracks classified as true

Track life Ratio of total duration of true tracks and
total duration of target trajectories

Scan-by-scan position RMSE RMSE position error for true tracks,
computed by associating each state
estimate to the target which last
contributed a report to the track [m]

Scan-by-scan velocity RMSE RMSE velocity error for true tracks,
computed by associating each state
estimate to the target which last
contributed a report to the track [m/sec]

Global-mapping position RMSE RMSE position error for true tracks,
computed on the basis of a track to target
association [m]

Global-mapping velocity RMSE RMSE velocity error for true tracks,
computed on the basis of a track to target
association [m/sec]

Table 3.4.  Performance metrics for tracking.

Several of the metrics listed above depend on the classification of each track as false or true, and, in the latter case, on an
association of each track to a target.  The classification is based on identifying the target that contributed to the most sensor
measurements utilized in forming a track.  If a track includes more false measurements than measurements originating from
any single target, the track is classified as false.  The fraction of false tracks is an important metric that reflects the reliability
of confirmed tracks.  False tracks are included in the fragmentation computation, yet they are discarded in the track life and
RMSE computations.

The issue of how best to evaluate the position and velocity RMSE associated with tracks that we classify as true is a non-
trivial one.  Consider the following example, in which two targets lead to a set of measurements in clutter, which are then
processed into a set tracks.  Assume that one of these track has a life over 7 scans, and contains 4 sensor measurements.  The
tracks is as follows:

Scan # Origin of measurement Scan-by-scan classification
Scan 1 Measurement from target 1 Target 1
Scan 2 Track coast (i.e. no measurement) Target 1
Scan 3 False measurement Target 1
Scan 4 Measurement from target 1 Target 1
Scan 5 Measurement from target 2 Target 2
Scan 6 Track coast Target 2
Scan 7 Track coast Target 2

Table 3.5.  RMSE computation example.

First, note that the target than contributes the most measurements to the track is target 1.  Since there are two such
measurements, and only one false measurement, the track is classified as true and is associated with target 1.  For the global-
mapping position and velocity RMSE, we compare the track estimates the actual position and velocity of target 1, for all 7
time points.  For the scan-by-scan position and velocity RMSE, we compare the track estimates with the classification given



in the third column of Table 3.5.  Note that the classification is based on associating each state estimate to the target that last
contributed a report to the track.  The scan-by-scan and global-mapping RMSE computations are complementary approaches
to understanding track accuracy.

4. SEISMIC TRACKING: EXPERIMENTAL RESULTS

Beyond what is listed in Table 3.2, our experimentation with seismic sensor involves the additional sensor specifications
listed in Table 4.1.

Number of seismic sensors 4
Placement of seismic sensors (75m, 75m), (-75m, 75m),

(75m,-75m), (-75m,-75m)
Table 4.1.  Seismic sensor placement.

The sensor locations and ranges, along with the region for target motion, are illustrated in Figure 4.1.

Figure 4.1.  Scenario context.

Our experimentation with seismic sensors will focus on two important thresholds.  The first is the threshold used in
EKF/MHT processing to confirm tracks.  The second is the detection threshold used to confirm target detections.  As
expected, there are tradeoffs in the selection of these thresholds in terms of tracking metrics of interest.  First, we set the
sensor detection probability and false alarm rates to the values listed in Table 4.2.  A single stochastic realization of five
target trajectories and sensor detections is shown in Figure 4.2.  The experimental results given in Table 4.3 are based on 5
Monte Carlo runs, each of which includes 5 target trajectories.

Probability of detection 7.0
False alarm rate per unit area 26 m105.0 −−⋅

Table 4.2.  Sensor parameters for the first set of experimental results.

Given the sensor range of 250m, the false alarm rate corresponds on average roughly to one false alarm per 10 scans of data.
(For acoustic data, given the sensor range of 750m, this rate corresponds roughly to one false alarm per scan of data).
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Figure 4.2.  A stochastic realization of five target trajectories and sensor measurements.

Performance Metric sec2=ξ sec3=ξ sec4=ξ
Computation time 49.08 49.08 49.08
Percentage of false tracks 0.453 0.078 0.004
Fragmentation 8.216 3.800 3.064
Probability of correct association 0.942 0.947 0.950
Track life 1.181 1.144 1.118
Scan-by-scan position RMSE 8.535 7.688 7.224
Scan-by-scan velocity RMSE 1.177 1.159 1.145
Global-mapping position RMSE 8.230 7.353 6.849
Global-mapping velocity RMSE 1.145 1.126 1.111

Table 4.3.  Seismic tracking performance as a function of confirmation threshold ξ .

Our results illustrate the impact of the choice of confirmation threshold on tracking performance.  Note that computation time
does not depend on the choice of threshold, since algorithmic processing is unaffected by its value.  The key metrics that are
impacted by the choice of threshold are the percentage of false tracks and the fragmentation, since most tracks that do not
meet a higher confirmation threshold are false, and a higher threshold naturally reduces the number of confirmed tracks.  The
probability of correct association and RMSE metrics also improve as the confirmation threshold is raised.  Track life remains
consistently high: the total time duration of confirmed tracks consistently exceeds the actual time duration of the target
trajectories.  We would like the track life metric to be as close as possible to 1.  As the confirmation threshold is increased
further still, we find that the benefits in terms of track fragmentation and track precision are outweighed by a substantial
decrease in track life, indicating that we are discarding relevant tracks with a too-stringent track confirmation threshold.
Thus, in our subsequent experimentation we have fixed the confirmation threshold at 4sec.

Next, we examine the impact of the sensor detection threshold on algorithm performance.  The results given in Table 4.4 are
again based on 5 Monte Carlo runs, each with 5 target trajectories.  Note that the middle column shows the previous results
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(with the confirmation threshold at 4sec), while the results in the right column are based on simulations with a higher sensor
detection threshold and higher false alarm rate: these correspond to a higher sensor detection threshold.

Performance Metric
2-6

FA

D

m105.0
7.0

−⋅=
=

λ
p

2-5
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D

m105.0
9.0

−⋅=
=

λ
p

Computation time 49.08 62.48
Percentage of false tracks 0.004 0.000
Fragmentation 3.064 1.520
Probability of correct association 0.950 0.981
Track life 1.118 1.048
Scan-by-scan position RMSE 7.224 5.445
Scan-by-scan velocity RMSE 1.145 1.046
Global-mapping position RMSE 6.849 5.151
Global-mapping velocity RMSE 1.111 1.023

Table 4.4.  Seismic tracking performance as a function of the sensor detection threshold.

Note that, at the cost of an increase in computation time due to the increased number of sensor measurements with higher
clutter, tracking performance is markedly improved with respect to all performance metrics.  (As we noted earlier, track life
should be close to 1).  Thus, for effective tracking based on seismic data it appears crucial to have a good probability of
detection, even at the cost of an increased false alarm rate.  Indeed, the MHT approach effectively reasons over several scans
of data so that the detrimental effect of increased clutter is mitigated.

5. ACOUSTIC TRACKING: EXPERIMENTAL RESULTS

A key issue in passive acoustic tracking is the limited observability of single sensors, due to their inability to measure range
to the target [1].  The availability of an increasing number of dispersed sensors reduces the likelihood of an unfavorable
geometry between sensors and targets, as well as providing an increased quantity of sensor data for more effective tracking.
In addition, the combination of the MHT approach along with an increase in the number of sensors is critical in reducing
ghosting effects, whereby a series of spurious triangulations may lead to the initiation and maintenance of an erroneous track.
Of course, the increase in data leads to a corresponding increase in computational burden.

 We compare the differences in tracking performance with two and four acoustic sensors.  In the four-sensor case, the sensor
locations are the same as in Tables 4.1.  In the two-sensor case, the placement of the sensors is indicated in Table 5.1.
Additional simulation parameters are given in Tables 3.1-3.3 and Table 5.1.

Placement of acoustic sensors (75m, 0), (-75m, 0)
Probability of detection 7.0
False alarm rate per unit area 28 m100.1 −−⋅

Table 5.1. Acoustic sensor parameters (two-sensor case).

Note that we have set a lower false alarm rate per unit area than in the seismic data case.  In part this is due to the larger
acoustic sensor range, in part to the presence of some ghost tracks with higher false alarm rates, which complicates the
interpretation of RMSE errors.  Here, we are more interested in comparing performance as a function of the number of
sensors, for relatively benign scenarios.  Tracking performance in the two-sensor and four-sensor cases are given in Table
5.2.  The results are based on 5 Monte Carlo runs, each of which is based on 3 target trajectories.

As in the experimental results with seismic data, we find that global-mapping RMSE errors are smaller than scan-by-scan
RMSE errors.  Here, the difference in the RMSE computations is accentuated due to the impact of incorrectly associated
bearing-only detections in low-density target scenarios.  As expected, in the two-sensor case we have decreased performance
with respect to all tracking metrics, except for computation time since less sensor data is processed.  In particular, the
presence of ghost tracks significantly degrades the RMSE metrics.



Performance Metric Two-sensor case Four-sensor case
Computation time 24.37 38.05
Percentage of false tracks 0.000 0.000
Fragmentation 1.066 1.000
Probability of correct association 0.822 0.903
Track life 0.770 0.965
Scan-by-scan position RMSE 56.07 26.27
Scan-by-scan velocity RMSE 1.719 1.021
Global-mapping position RMSE 54.67 6.624
Global-mapping velocity RMSE 1.663 0.971

Table 5.2.  Acoustic tracking performance as a function of the number of sensors.

In Figure 5.1, we illustrate a realization of ground target trajectories, sensor measurements, and tracks.  Sensor measurements
are indicated with a short line segment originating from the sensor.  In general, we find that our ability to track targets
accurately is reduced when target the overall sensor-to-target geometry is less favorable.  In particular, when target move in
the smaller region bounded by the four sensors, more accurate tracks are maintained.

Figure 5.1.  A stochastic realization of ground truth, acoustic sensor measurements, and acoustic tracks.

The impact of a less favorable geometry on tracking performance can be measured more directly by varying sensor
placement.  In particular, the next set of experimental results is based on bringing the four acoustic sensors close together, to
a distance of 10m between neighboring sensors.  Experimental results are given in Table 5.3 and are based on 5 Monte Carlo
runs, each of which is based on three target trajectories.  (The right column is the same as in Table 5.2).

Note that with close sensors, it is much more difficult to confirm tracks, as evidenced by a much lower track life and a
fragmentation less than one, indicating that some targets trajectories do not lead to a confirmed track.  The probability of
correct association is also degraded, as are most of the RMSE quantities.  Interestingly, computation time is much higher in
the close-sensors case, due to the larger number of feasible associations that are created in MHT processing, as data
association becomes less unambiguous.

Performance Metric Unfavorable geometry Favorable geometry
Computation time 63.19 38.05
Percentage of false tracks 0.000 0.000
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Fragmentation 0.933 1.000
Probability of correct association 0.888 0.903
Track life 0.730 0.965
Scan-by-scan position RMSE 21.90 26.27
Scan-by-scan velocity RMSE 1.106 1.021
Global-mapping position RMSE 26.01 6.624
Global-mapping velocity RMSE 1.153 0.971

Table 5.3.  Acoustic tracking performance as a function of sensor placement.

6. DIRECTIONS FOR FURTHER RESEARCH

In this paper, we have illustrated preliminary results based on an EKF/MHT approach to target tracking for simulated seismic
and acoustic data.  We have investigated the sensitivity of tracking performance on key parameters of the problem including
the detection threshold associated with signal-level data, the number and location of sensors on the ground, and the track
confirmation threshold.  Our previous analysis of the scalability of our tracking algorithm [4] indicates the feasibility of
processing data from much larger scenarios, with large numbers of sensors on the ground.

We plan to extend our work in a number of directions.  First, we plan to enhance our sensor models to represent more
faithfully their actual characteristics.  In particular, we must clarify to what extent we can assume knowledge of the location
and orientation of large number of inexpensive UGS that will not be GPS-equipped in general.  This introduces an important
registration and bias estimation aspect to the problem.  Second, we plan to characterize and exploit additional feature
information that is available from ground sensors, including amplitude and frequency information.  Feature information is
critical to effective multi-target tracking in dense target environments.  Finally, we will continue to investigate enhancements
to our baseline approach to tracking, including the use of enhanced IMM-based target motion models and filters [9][10] and
the use of particle filtering techniques that have shown to perform well in highly nonlinear settings [11].
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